
The impact of sharp screening on the Coulomb scattering problem in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 245302

(http://iopscience.iop.org/1751-8121/43/24/245302)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 03/06/2010 at 09:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/24
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 245302 (14pp) doi:10.1088/1751-8113/43/24/245302

The impact of sharp screening on the Coulomb
scattering problem in three dimensions

S L Yakovlev1, M V Volkov2,3, E Yarevsky1 and N Elander3

1 Department of Computational Physics, St Petersburg State University, 198504 St Petersburg,
Russia
2 Department of Quantum Mechanics, St Petersburg State University, 198504 St Petersburg,
Russia
3 Department of Physics, Stockholm University, Alba Nova University Center, SE 106 91,
Stockholm, Sweden

E-mail: yakovlev@cph10.phys.spbu.ru

Received 1 March 2010
Published 19 May 2010
Online at stacks.iop.org/JPhysA/43/245302

Abstract
The scattering problem for two particles interacting via the Coulomb potential is
examined for the case where the potential has a sharp cut-off at some distance.
The problem is solved for two complementary situations, firstly, when the
interior part of the Coulomb potential is left in the Hamiltonian and, secondly,
when the long-range tail is considered as the potential. The partial wave results
are summed up to obtain the wavefunction in three dimensions. It is shown
that in the domains where the wavefunction is expected to be proportional
to the known solutions, the proportionality is given by an operator acting
on the angular part of the wavefunction. The explicit representation for this
operator is obtained in the basis of Legendre polynomials. We proposed a
driven Schrödinger equation including an inhomogeneous term of the finite
range with purely outgoing asymptotics for its solution in the case of the
three-dimensional scattering problem with long-range potentials.

PACS number: 03.65.Nk

1. Introduction

1.1. Background

The Coulomb force is the dominating interaction in atomic and molecular physics. It is
therefore the underlying force in chemistry and biology. Describing reactions with charged
particles is thus an essential task for theoretical atomic and molecular physics as well as in
chemistry. Despite this fundamental importance, solving the Schrödinger equation for even
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a three-body problem is a very difficult task. The asymptotic form of the wavefunction for
three-body breakup is known to have a very complicated structure. A recent review [1]
provided an outline of the most important articles which deal with the scattering problem of
charged particles. The majority of these methods focus on solving the three-body problem
without explicit knowledge of the three-body breakup asymptotics. Inspired by the methods
of [2] and [3, 4], in two recent studies we presented a new and rigorous method which can
be used to solve the Coulomb scattering problem by using exterior complex scaling [5, 6].
The former analyzes the single-channel two-body problem, while the latter indicates how the
same formalism can be generalized to the full multi-channel three-body problem. In this
contribution, we demonstrate the construction of the formal part of the three-dimensional
formulation of the three-body problem outlined in [6] by studying the three-dimensional
two-body problem.

1.2. Definition of the problem

The scattering solution to the Schrödinger equation

[−�r + Vc(r) − k2]ψc(r, k) = 0 (1)

for the Coulomb potential Vc(r) = 2ηk/r has the well-known form [7–9]

ψc(r, k) = �(1 + iη) e−πη/2 eir·k
1F1(−iη, 1, i(rk − r · k)). (2)

Here the vectors r and k describe the position and the incident momentum. Their magnitudes
are denoted by r and k. � and 1F1 are the gamma function and the confluent hypergeometric
function, respectively. Another way of representing the solution ψc(r, k) is the partial wave
decomposition [9]:

ψc(r, k) = 1

kr

∞∑
�=0

(2� + 1)i� eiσ�F�(η, kr)P�(cos θ). (3)

Here cos θ = r · k/rk, σ� = arg �(� + 1 + iη) represents the Coulomb phase shift and P� is
the �th Legendre polynomial. The regular Coulomb wavefunction F�(η, kr) [10] obeys the
partial wave equation(

− d2

dr2
+

�(� + 1)

r2
+

2ηk

r
− k2

)
F�(η, kr) = 0 (4)

and the boundary condition F�(η, 0) = 0 at the origin. With this choice of coordinates, the
wavefunction depends on the triad r, u = cos θ, k, such that ψc = ψc(r, u, k).

Although the explicit representations (2) and (3) have been known since the earliest stages
of quantum mechanics [7, 8], the various approximations, which are based on the procedures
necessary for the suppression of the long-range tail of the Coulomb potential, have been studied
for many decades. The total number of publications on this subject is enormous, and so here
we quote only those few which focus on the principal aspects of the problem [7, 8, 11–13].
Such procedures, called screening, are of substantial interest in view of their application to
the scattering problem for more than two particles, since in that case the exact solution of the
Coulomb problem is not available [14, 15].

In principal, two kinds of screening procedures exist, i.e. the sharp and the soft. The
sharp procedure, which cuts off the Coulomb potential beyond some radius R, leads to the
finite-range potential

VR(r) = Vc(r)
(R − r). (5)
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Here 
 is the standard Heaviside function such that 
(t) = 1(0), t � 0(t < 0). Soft
screening methods imply multiplication of Vc by a smooth screening factor as, for instance,
is done in the Yukawa potential Wρ(r) = Vc(r) e−r/ρ . The Coulomb wavefunction can be
obtained in the limit ρ → ∞ from the solutions of the Schrödinger equation with the potential
Wρ . A regularizing factor is needed to obtain the correct limit. For the three-dimensional
Yukawa potential, this factor is known analytically [13].

The situation with the potential VR is more delicate. The representation for the Coulomb
wavefunction through the solution for the screened potential VR can easily be obtained at
finite values of R for partial wave components [8, 11, 12]. The regularizing factor in this
case is �-dependent. The infinite sum over � should be computed to obtain the solution in
three dimensions. An accurate analysis of the asymptotics of the partial wave series for the
scattering amplitude as R → ∞ was performed in [12] on the basis of distribution theory.
This led the authors to the commonly accepted asymptotic regularizing factor e−i2η log 2kR for
the scattering amplitude for the potential VR. No extra term possessing singularities in the
forward (backward) scattering direction was observed in [12], since the test functions used
for the partial series summations were assumed to be vanishing in those directions. In fact,
this requirement is not necessary. The problem of deriving the correct three-dimensional
expression for the wavefunction, which explicitly includes the Coulomb wavefunction ψc,
was not the focus of the papers [11, 12]. The paper [16] attempted to solve the problem in
three dimensions directly by solving the three-dimensional Lippmann–Schwinger equation
with the potential VR. However, the derivations made in [16] have been performed only for a
particular value of the coordinate r = 0. It was not proven that the solution obtained in [16]
is valid for all values of r. In the comment [17] it was shown by direct calculations that the
three-dimensional result of [16] is erroneous. A further discussion of the results of [16] and
their relation to the results of [12] can be found in [18].

To date, the open situation of the cut-off Coulomb problem coupled with our own interests
[5], related to the application of the complex rotation method for calculating the scattering
states in the system of particles with long-range interactions, stimulated this research. This
paper is devoted to studying the scattering problem for a sharp cut-off Coulomb potential VR

and its complement

V R = Vc − VR. (6)

In section 2, the partial wave equations are solved for a potential VR by the conventional
matching procedure at the point r = R, and the infinite sum over angular momenta � is then
evaluated in order to obtain the solution to the three-dimensional Schrödinger equation. The
main result of this paper is that we prove in the region r < R the wavefunction for the potential
VR in three dimensions, given by the action of an operator on the Coulomb wavefunction. This
operator acts over the angular coordinate. The asymptotics of this operator is evaluated as
R → ∞. Our derivation supports the form of the regularizing factor for the wavefunction
which was proposed in [11] for three dimensions but without a detailed proof. An extra
term is found in the asymptotics of the scattering amplitude which possesses fast oscillations
as a function of R and delta-functional singularity in the forward scattering direction. In
section 3, we present the solution of the scattering problem for the Schrödinger equation with
the potential VR. To the best of the authors’ knowledge, this is the first time that this has
been reported. This solution is used in section 4 to construct the three-dimensional driven
Schrödinger equation with the finite-range potential VR in the inhomogeneous term. As we
demonstrated in our recent paper [5], this equation is ideally suitable for applying the complex
rotation method to solve the scattering problem with long-range interactions.
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2. The scattering problem for the potential VR

The partial wave equation(
− d2

dr2
+

�(� + 1)

r2
+ VR(r) − k2

)
v�(r, k) = 0 (7)

with the boundary condition v�(0, k) = 0 and the asymptotics as r → ∞
v�(r, k) ∼ ĵ�(kr) + AR� ĥ+

� (kr) (8)

determines the scattering partial wavefunction for a given orbital momentum �. Here ĵ� and ĥ+
�

are the standard Riccati–Bessel and Riccati–Hankel functions [10]. The exact representation
for v�(r, k) has a different form depending on whether the value of r is in or out the interval
0 < r � R [11]. For r ∈ (0, R], one obtains

v�(r, k) = aR� F�(η, kr). (9)

For r � R, the solution v� takes the form

v�(r, k) = ĵ�(kr) + AR� ĥ+
� (kr). (10)

At r = R, both the function v� and its first derivative have to be continuous in r, i.e.
∂n
r v�(R − 0, k) = ∂n

r v�(R + 0, k), n = 0, 1. These conditions yield

aR� = WR

{
ĵ�, ĥ

+
�

}/
WR

{
F�, ĥ

+
�

}
, (11)

and

AR� = WR{ĵ�, F�}/WR

{
F�, ĥ

+
�

}
, (12)

where WR{f, g} is the Wronskian f (r)g′(r) − f ′(r)g(r) that is calculated at r = R. The
phase shift δR� is then determined by the standard representation of the scattering amplitude
AR�:

AR� = ei2δR� − 1

2i
. (13)

It is seen from (11) and (12) that the phase shift δR� can also be given by the argument of the
amplitude aR�:

δR� = arg aR�. (14)

Using the asymptotics of Riccati–Bessel functions as kR � �(� + 1) and the asymptotics of
the regular Coulomb function as kR � �(� + 1) + η2, one obtains the asymptotics of aR�:

aR� ∼ ei(σ�−η log 2kR). (15)

Therefore, the asymptotics of the phase shift δR� when kR � �(� + 1) + η2 reads [11]

δR� ∼ σ� − η log 2kR. (16)

The above procedure describes how the partial waves v�(r, k) can be constructed. Then the
wavefunction v(r, u, k) is given by the infinite sum over momenta �:

v(r, u, k) = 1

kr

∞∑
�=0

(2� + 1)i�v�(r, k)P�(u). (17)

This function satisfies the three-dimensional Schrödinger equation (1) with the potential VR

taken instead of Vc.
Before proceeding further, we would like to point out that the convergence of the partial

wave series for the scattering solutions should be considered with care, especially for the
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case of long-range potentials [12]. The most reliable method is by using distribution theory.
Consider an infinitely differentiable test function f (u) ∈ C∞(−1, 1). By multiplying both
sides of (17) with f (u) and integrating over u, we obtain∫ 1

−1
du v(r, u, k)f (u) = 1

kr

∞∑
�=0

(2� + 1)i�v�(r, k)

∫ 1

−1
duP�(u)f (u). (18)

Introducing the Fourier coefficients with respect to the Legendre polynomials

f� = (2� + 1)

∫ 1

−1
duP�(u)f (u), (19)

equation (18) can be rewritten in the following form:∫ 1

−1
du v(r, u, k)f (u) = 1

kr

∞∑
�=0

i�v�(r, k)f�. (20)

The series on the right-hand side is absolutely and uniformly convergent in the interval
0 < r < ∞ since the set of Fourier coefficients f� itself forms the absolutely convergent
series, and the terms of the series (20) can be estimated as

|v�(r, k)f�| � C|f�|, (21)

where C is some constant. Thus, the leading term of the asymptotics of the series when
r → ∞ is now determined by the asymptotics of a certain number of coefficients v�(r, k),
whilst the tail of the series is negligible. The detailed description of using such an approach
for the partial wave series summation can be found in [12]. In the following discussion, we
treat the partial series in the sense described above while assuming formulae such as (18),
(20) implicitly. We also extend this technique to the operators acting on the square integrable
functions of the angular variable u.

2.1. Properties of the solution for r � R

For r � R, equation (17) yields

v(r, u, k) = 1

kr

∞∑
�=0

(2� + 1)i�aR�F�(η, kr)P�(u). (22)

The right-hand side of (22) is the series in Legendre polynomials [10]. The polynomials P�

form an orthogonal and complete set of functions on the interval (−1, 1) with respect to the
scalar product

〈f |g〉 =
∫ 1

−1
du f ∗(u)g(u), (23)

where the asterisk indicates the complex conjugate. The orthogonality and completeness
conditions for P� are

∫ 1

−1
duP�(u)Pλ(u) = 2

2� + 1
δ�λ, (24)

∞∑
�=0

2� + 1

2
P�(u)P�(u

′) = δ(u − u′). (25)

This set provides a basis for the L = L2(−1, 1) space of square integrable functions on the
interval (−1, 1), with (23) as the inner product and with ‖f ‖ = 〈f |f 〉1/2 as the norm. In the
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following derivation, the elements of L will be denoted as vectors, e.g. |f 〉. With this notation,
(24) and (25) take the abbreviated form

〈P�|Pλ〉 = 2

2� + 1
δ�λ, (26)

∞∑
�=0

2� + 1

2
|P�〉〈P�| = I. (27)

Here I denotes the unit operator in L. Equation (22) now reads

|v(r, k)〉 = 1

kr

∞∑
�=0

(2� + 1) i�aR�F�(η, kr)|P�〉. (28)

Here |v(r, k)〉 ∈ L represents v(r, u, k) as a function of u. From the form of (28), this can be
recast into

|v(r, k)〉 =
∞∑

�=0

aR� e−iσ�
2� + 1

2
|P�〉〈P�| 1

kr

∞∑
λ=0

(2λ + 1) iλ eiσλFλ(η, kr)|Pλ〉. (29)

By comparing this equation with (3), one identifies the right-hand side of (29) with the action
of the operator

aR =
∞∑

�=0

aR� e−iσ�
2� + 1

2
|P�〉〈P�| (30)

on the Coulomb wavefunction, which in L is represented by the vector

|ψc(r, k)〉 = 1

kr

∞∑
λ=0

(2λ + 1) iλ eiσλFλ(η, kr)|Pλ〉. (31)

Thus, we have obtained the central focus of this part of the derivation, which establishes the
relation between the solution of the Schrödinger equation with the sharply cut-off potential VR

and the Coulomb wavefunction for r � R. It has the form

|v(r, k)〉 = aR |ψc(r, k)〉. (32)

The inverse identity also holds true, yielding

|ψc(r, k)〉 = a−1
R |v(r, k)〉. (33)

The exact form of a−1
R is easily calculated from the orthogonality and completeness of

Legendere polynomials

a−1
R =

∞∑
�=0

a−1
R� eiσ�

2� + 1

2
|P�〉〈P�|. (34)

Representation (11) guarantees |aR,�| �= 0, and consequently the inverse is correctly defined
by (34). Formulae (32), (33) are the main results of this section, and they provide us with the
representations of the Coulomb wavefunction in terms of the wavefunction v(r, u, k). These
representations are valid for an arbitrary value of the screening radius R.

A subsequent reduction of the complexity of the representations (32) and (33) can be
observed if R → ∞ by studying the asymptotics of the operator aR . The operator aR can
be simplified as R → ∞ with the help of the asymptotics (15) of the coefficients aR�. The
natural topology for calculating the asymptotics of aR is the strong operator topology in L,
i.e. when the asymptotics of vectors aR|f 〉 in L is considered as R → ∞. Construct a vector

6
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|gR〉 = aR|f 〉 with an arbitrary |f 〉 ∈ L and then represent this vector as a sum of two terms
|gR〉 = |gLR〉 +

∣∣gL
R

〉
, where

|gLR〉 =
L∑

�=0

aR� e−iσ�
2� + 1

2
|P�〉〈P�|f 〉,

∣∣gL
R

〉 =
∞∑

�=L+1

aR� e−iσ�
2� + 1

2
|P�〉〈P�|f 〉.

(35)

The second sum can be made arbitrarily small by the choice of L. Indeed, due to the known
properties of the Riccati–Hankel function and of the regular Coulomb function [10] it is seen
that the coefficients (11) are bounded |aR�| � C, then

∥∥gL
R

∥∥2 � C2
∞∑

�=L+1

(2� + 1)

2
|〈P�|f 〉|2. (36)

The Parseval identity for the series in Legendre polynomials
∞∑

�=0

(2� + 1)

2
|〈P�|f 〉|2 = ‖f ‖2, (37)

shows that the series on the left-hand side of (37) is convergent and, as a consequence, its tail
∞∑

�=L+1

(2� + 1)

2
|〈P�|f 〉|2 (38)

can be made arbitrarily small if L is taken to be sufficiently large. From this we conclude that
the infinite sum on the right-hand side of the inequality (36) can be made arbitrarily small if
L is large enough. Thus, for any small ε > 0, there exists an integer L0 > 0 such that for all
L � L0 the inequality holds∥∥gL

R

∥∥2 � C2ε. (39)

Consider now the vector |gL0R〉. Since L0 is finite there always exists a value of R such that the
condition kR � L0(L0 + 1) + η2 is fulfilled. More precisely, the asymptotics of the Riccati–
Hankel function and of the regular Coulomb function can be used for evaluating Wronskians
in (11), as indicated in (15), to arrive at the inequality

|aRL0 − ei(σL0 −η log 2kR)| � ε1/2. (40)

Similar inequalities where L0 is replaced by � for all � � L0 are obviously also true. With
these inequalities, we obtain

‖|gL0R〉 − e−iη log 2kR IL0 |f 〉‖2 � ε‖f ‖2, (41)

where

IL0 =
L0∑
�=0

2� + 1

2
|P�〉〈P�|. (42)

Combining inequalities (39) and (41) with the definition of |gR〉, we obtain the final estimate

‖(aR − e−iη log 2kR IL0)|f 〉‖2 � ε(C2 + ‖f ‖2). (43)

With this estimate, L0 can be extended up to infinity and the inequality with I instead of IL0

is also valid. Thus, the final result for the asymptotics of the operator aR is formulated as
follows.

7
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Theorem 1. For any arbitrarily small ε > 0 there exists R such that the representation

aR = e−iη log 2kR I + O(ε) (44)

holds true. Here the norm of a residual operator O(ε) acting on any vector in L is of the order
ε as in (43).

On applying theorem 1 to the vector |f 〉 = |ψc(r, k)〉, the asymptotic form of relation
(32) is obtained:

|v(r, k)〉 = e−iη log 2kR|ψc(r, k)〉 + O(ε)|ψc(r, k)〉. (45)

The alternative is given by

|ψc(r, k)〉 = eiη log 2kR [|v(r, k)〉 − O(ε)|ψc(r, k)〉] . (46)

These two last formulae provide the strict basis for the problem of the asymptotic regularization
[11, 16], which is needed when constructing the three-dimensional Coulomb wavefunction
from the solution of the Schrödinger equation with the screened Coulomb potential VR.

Although the asymptotic regularizing factor eiη log 2kR is numerical and does not depend
on the angular variable u, the general factor aR is the operator in the angular space L. This
operator connects the two solutions v(r, u, k) and ψc(r, u, k) to the same equations for r � R.
This does not lead to a contradiction since the operator aR , or more precisely its extension on
the three-dimensional space for which we will keep the same notation aR , commutes with the
Hamiltonian Hc = −�r + Vc(r):

aRHc = HcaR. (47)

Thus, if the function v(r, u, k) obeys the Schrödinger equation for r � R

(Hc − k2)v(r, u, k) = 0, (48)

then one obtains

(Hc − k2)v(r, u, k) = (Hc − k2)aRψc(r, u, k)

= aR(Hc − k2)ψc(r, u, k) = 0. (49)

For the sake of completeness, it is worth giving the explicit representation of the operator
aR acting on the functions of the angular variable:

aRf (r, u, k) =
∫ 1

−1
du′ aR(u, u′)f (r, u′, k). (50)

Here the kernel aR(u, u′) in accordance with (30) is represented by

aR(u, u′) =
∞∑

�=0

aR� e−iσ�
2� + 1

2
P�(u)P�(u

′). (51)

This kernel is identical to the function (5) from [17] after respective unification of notations.

2.2. Properties of the solution for r � R

For r � R, the function v�(r, k) has the form (10). The summation over � leads to the
three-dimensional solution

v(r, u, k) = eirku + vsc(r, u, k), (52)

where the scattered part has the form

vsc(r, u, k) = 1

kr

∞∑
�=0

(2� + 1)i�AR� ĥ+
� (kr)P�(u). (53)

8
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Using standard arguments, one arrives at the asymptotics of vsc as kr → ∞:

vsc(r, u, k) ∼ AR(u, k) eikr/r (54)

with the partial wave representation for the scattering amplitude AR(u, k) given by

AR(u, k) = 1

k

∞∑
�=0

(2� + 1)AR�P�(u). (55)

If R → ∞, the amplitude AR(u, k) can be represented through the Coulomb scattering
amplitude. In order to demonstrate this, one needs to use the representation of the amplitude
through the phase shift (13) and its asymptotics (16). The following representation is first
derived:

AR(u, k) ∼ 1

k

∞∑
�=0

(2� + 1)
ei2(σ�−η log 2kR) − 1

2i
P�(u). (56)

By using the standard partial wave expansion of the Coulomb scattering amplitude Ac,

Ac(u, k) = 1

k

∞∑
�=0

(2� + 1)
ei2σ� − 1

2i
P�(u), (57)

representation (56) can be transformed to the form

AR(u, k) ∼ e−i2η log 2kRAc(u, k) − 2

k
e−iη log 2kR sin(η log 2kR)

∞∑
�=0

2� + 1

2
P�(u). (58)

The sum in the second term of (58) can easily be evaluated with the help of the completeness
of the Legendre polynomials (25) and by taking into account that P�(1) = 1:

∞∑
�=0

2� + 1

2
P�(u) = δ(1 − u). (59)

Here the delta function is understood as in [12]:∫ 1

−1
du δ(1 − u)f (u) = f (1). (60)

Introducing (59) into formula (58), we obtain the final form of the asymptotics of the
amplitude (55):

AR(u, k) ∼ e−2iη log 2kRAc(u, k) − 2

k
e−iη log 2kR sin(η log 2kR) δ(u − 1). (61)

This is one of the main results of this section. One can recognize in the first term of (61)
the regularization factor, which was derived in [12]. The second term with the strong delta
function singularity was not known until now and, as demonstrated in the analysis shown
above, its exact form can be obtained by the accurate summation of all partial terms.

3. The scattering problem for the potential VR

In this section, the approach detailed in paper [5] is followed to construct the solution to the
partial wave equation(

− d2

dr2
+

�(� + 1)

r2
+ V R(r) − k2

)
w�(r, k) = 0 (62)

9
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for the potential VR. The exact representation for w�(r, k) is of the form

w�(r, k) = aR
� ĵ�(kr), (63)

provided r � R. For r � R, this gives

w�(r, k) = eiσ�F�(η, kr) + AR
� u+(η, kr). (64)

Here u+(η, kr) = e−iσ�(G� + iF�), and G� is the irregular Coulomb function [10]. Similar to
(11) and (12), the parameters aR

� and AR
� should be found by matching representations (63)

and (64) for the function w�(kr) and for its first derivative at the point r = R. This leads to
the expressions

aR
� = eiσ�WR

(
F�, u

+
�

)/
WR

(
ĵ�, u

+
�

)
, (65)

AR
� = eiσ�WR(F�, ĵ�)

/
WR

(
ĵ�, u

+
�

)
. (66)

The phase shift δR
� is introduced by the standard representation for the amplitude AR

� :

AR
� = ei2σ�

ei2δR
� − 1

2i
. (67)

For large values of R such that kR � �(� + 1) + η2 the asymptotics of the regular Coulomb
function and the Riccati–Bessel function can be used to obtain the following asymptotic
representations for amplitudes (65) and (66):

aR
� ∼ eiη log 2kR, (68)

AR
� ∼ ei2σ�

ei2(η log 2kR−σ�) − 1

2i
. (69)

The solution to the three-dimensional Schrödinger equation is given by the sum over the
momenta � as

w(r, u, k) = 1

kr

∞∑
�=0

(2� + 1)i�wR
� (r, k)P�(u). (70)

As in the previous section, this function takes special forms on the intervals 0 < r � R and
r � R. The L vectors will be used as above for formulating results. For 0 < r � R, the vector
|w(r, k)〉 can be represented in terms of the vector |ψ0(r, k)〉, which represents the plane wave
ψ0(r, u, k) = eirku as follows:

|w(r, k)〉 = aR|ψ0(r, k)〉. (71)

The operator aR is represented by

aR =
∞∑

�=0

aR
�

2� + 1

2
|P�〉〈P�|. (72)

The asymptotics of this operator as R → ∞ can be evaluated in the same way as in the
previous section. The final result should again be understood in the sense of the strong
operator topology in L. It reads

aR ∼ eiη log 2kR I. (73)

This formula shows that, asymptotically, as R → ∞,

aR  a−1
R . (74)
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For r � R, the function w(r, u, k) is given by the expression

w(r, u, k) = ψc(r, u, k) + wsc(r, u, k), (75)

where

wsc(r, u, k) =
∞∑

�=0

(2� + 1)i�AR
� u+

� (η, kr)P�(u). (76)

Using standard arguments, we obtain the asymptotics of wsc(r, u, k) as kr → ∞:

wsc(r, u, k) ∼ AR(u, k) ei(kr−η log 2kr)/r. (77)

Here the partial wave decomposition for the amplitude is expressed as

AR(u, k) = 1

k

∞∑
�=0

(2� + 1)AR
� P�(u). (78)

If R → ∞, the asymptotics of the amplitude AR(u, k) should be combined with the Coulomb
amplitude Ac(u, k) in order to form the total amplitude of the outgoing spherical wave for the
function (75). In this case, we obtain

Ac(u, k) + AR(u, k) ∼ 2

k
eiη log 2kR sin(η log 2kR) δ(1 − u). (79)

Comparing with the representation (61) for the amplitude AR(u, k), one finds the relation

AR  −e2iη log 2kRAR, (80)

which holds for large values of R. This relation can be proved independently by comparing
the partial wave series for the amplitudes AR(u, k) and AR(u, k).

The opposite limit as R → 0 has a certain interest for the case of the potential VR. It is
obvious that V R → Vc. A similar effect can be expected for the limit of the wavefunction
w(r, u, k) → ψc(r, u, k). The proof is based on the following asymptotics for the coefficients
aR

� and AR
� :

aR
� ∼ eiσ�C�(2� + 1)!!, (81)

AR
� ∼ ei2σ�

C2
� η

� + 1
(kR)2�+2. (82)

Here C� is the standard Coulomb normalization factor [10]. It is easy to see that asymptotically
as R → 0

aR
� ĵ�(kr) ∼ eiσ�F�(η, kr) (83)

for all 0 < r � R. When R → 0, the function u+(η, kr) becomes singular as r → R:

u+(η, kr) ∝ r−l . (84)

At the same time, the amplitude AR
� behaves as

AR
� ∝ R2(l+1). (85)

Hence, for all R � r < ∞, one obtains

max
r∈[R,∞)

∣∣AR
� u+

� (η, kr)
∣∣ = O(R�+2), (86)

which shows that the term AR
� u+

� (η, kr) vanishes faster than the leading term eiσ�F�(η, kr) =
O(r�+1) when r → R and R → 0. Using these estimates in (64), one readily arrives at the
statement

w(r, u, k) ∼ ψc(r, u, k) (87)

when R → 0.

11
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4. The driven Schrödinger equation for the Coulomb scattering problem

In our recent study [5], we demonstrated that the inhomogeneous partial wave Schrödinger
equation for the scattered part of the wavefunction with purely outgoing boundary conditions
can be constructed and then successfully employed for solving the scattering problem for
long-range potentials. The key element of this approach is the solution of the partial wave
Schrödinger equation for the potential VR. The three-dimensional approach can now be
formulated with the help of the solution from the preceding section. The Hamiltonian Hc is
represented by

Hc = −�r + VR(r) + V R(r) (88)

and the wavefunction ψc as

ψc(r, u, k) = w(r, u, k) + ψR(r, u, k). (89)

Here w(r, u, k) is the wavefunction for the potential VR:

(−�r + V R(r) − k2)w(r, u, k) = 0, (90)

constructed in the preceding section. The function ψR(r, u, k) obeys the inhomogeneous
(driven) equation

(−�r + Vc(r) − k2)ψR(r, u, k) = −VR(r)w(r, u, k) (91)

and the purely outgoing boundary conditions as r → ∞, r � R

ψR(r, u, k) ∼ AR(u, k) ei(kr−η log 2kr)/r. (92)

It is seen from the definition that the amplitude AR is given in terms of AR through (78) by

AR = −AR. (93)

For r � R, it is useful to employ the interpretation of the functions as vectors in L. In this
notations, ψR takes the form

|ψR(r, k)〉 = |ψc(r, k)〉 − aR|ψ0(r, k)〉, (94)

and equation (91) becomes

(Hc − k2)|ψR(r, k)〉 = −aRVR|ψ0(r, k)〉. (95)

Multiplying (94) by (aR)−1 and using (33), one arrives at the representation

(aR)−1|ψR(r, k)〉 = (aR aR)−1|v(r, k)〉 − |ψ0(r, k)〉,
which can be reduced using the asymptotic relation (74) for large values of R to

(aR)−1|ψR(r, k)〉  |v(r, k)〉 − |ψ0(r, k)〉. (96)

By its construction, the function

|φR(r, k)〉 = (aR)−1|ψR(r, k)〉 (97)

obeys the equation

(Hc − k2)|φR(r, k)〉 = −VR|ψ0(r, k)〉. (98)

Following (96), the function φR(r, k) for r � R and large values of R can be represented as

|φR(r, k)〉  |v(r, k)〉 − |ψ0(r, k)〉. (99)

Equation (98) is the desired three-dimensional driven equation, which can be used for solving
the Coulomb scattering problem by the complex rotation method. The formulation of the
scattering problem on the basis of equation (98) obeys two necessary conditions, which are
needed for the application of the complex rotation method, i.e. (i) the solution φR(r, u, k) has
the purely outgoing asymptotics

12
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φR(r, u, k) ∼ (aR)−1AR ei(kr−η log 2kr)/r (100)

and (ii) the inhomogeneous term on the right-hand side of (98) vanishes outside of the sphere
of the radius R.

5. Conclusion

New results on the structure of the solutions to the three-dimensional Schrödinger equation
for the sharply cut-off Coulomb potential have been derived. For the potential VR, which
coincides with the Coulomb potential for all r � R, it was found that the wavefunction
is proportional to the Coulomb wavefunction up to an operator factor. This operator acts
as an integral operator over the spherical angular variable. The operator aR is reduced to
the multiplication by the constant e−iη log 2kR only asymptotically as R → ∞. This result
clarifies the domain of validity for unjustified assumptions about the proportionality factor
which was taken as a constant in [11] and [16]. The asymptotic representation of the scattering
amplitude for the potential VR in the case where R → ∞ in addition to the standard term
e−i2η log 2kRAc also contains the extra term (61). It has fast oscillations as R → ∞ and a
strong delta-functional singularity in the forward scattering direction. To the best of our
knowledge, this formula has been derived here for the first time. The representation for the
scattering amplitude obtained in the recent paper [16] was derived from the incorrect form
of the wavefunction in the region r � R [17] and cannot be considered as a contra-result.
The complete solution for the scattering problem for the potential VR is given in this paper
for the first time. Formula (80) supports the complementary character of the two potentials in
the sense that V R = Vc − VR and should be considered as the fact of the self-consistency of
our treatment. The three-dimensional formulation of the driven Schrödinger equation, given
in section 4, opens the way for forthcoming applications in the three-body systems along the
line given in [6].
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